181 research outputs found

    Accessing the soot-related radiative heat feedback in a flame spreading in microgravity: optical designs and associated limitations

    Get PDF
    Novel, high-fidelity results related to soot from microgravity flames were obtained by an international topical team on fire safety in space. More specifically, embedded optical techniques for evaluation of the soot-related radiative feedback to the base material from a spreading non-premixed flame in microgravity were developed. The configuration used a non-buoyant axisymmetric flame propagating in an opposed laminar stream overa Low Density PolyEthylene coating of an electrical wire. Within this context, both the standard Broadband Two Color Pyrometry (B2CP) and its recent extension Broadband Modulated Absorption/Emission (BMAE) technique can be deployed to measure the spatial distribution of soot temperature and volume fraction within the flame. Both fields are then processed to establish the field of local radiative balance attributed to soot within the flame, and ultimately the soot contribution to the radiative flux to the wire. The present study first assesses the consistency of the methodology contrasting an experimental frame and a synthetic one, the latter being produced by a signal modeling that processes fields delivered by a numerical simulation of the configuration as inputs. Using the synthetic signals obtained, the fields of local radiative balance within the flame are then computed and significant discrepancies were disclosed locally between the fields originating from the synthetic BMAE and B2CP inputs. Nevertheless, the subsequent evaluation of the soot-related radiative heat feedback to the wire shows that a weak deviation among the techniques implemented is expected. This finding is corroborated by similar evaluations conducted with experimental BMAE and B2CP measurements obtained in parabolic flights. As BMAE is implemented in an ISS configuration within the SCEM rig, BMAE and B2CP will soon provide long-duration soot observations in microgravity. In order to contrast the upcoming results, this current study quantifies discrepancies originating from the post-processing regarding soot temperature and volume fraction, and shows that the radiative feedback evaluation from both methods should be consistent

    Effects of oxygen depletion on soot production, emission and radiative heat transfer in opposed-flow flame spreading over insulated wire in microgravity

    Get PDF
    This paper investigates experimentally and numerically pressure effects on soot production and radiative heat transfer in non-buoyant opposed-flow flames spreading over wires coated by Low Density PolyEthylene (LPDE). Experiments, conducted in parabolic flights, consider pressure levels ranging from 50.7 kPa to 121.6 kPa and an oxidizer flowing parallel to the wire's axis at a velocity of 150 mm/s and composed of 20% O2/80% N2 in volume. The numerical model includes a detailed chemistry, a two-equation smoke-point based soot production model, a radiation model coupling the Full-Spectrum correlated-k method with the finite volume method and a simple degradation model for LDPE. An analysis of the experimental data shows that the spread rate, the pyrolysis mass flow rate, and the residence time for soot formation are independent of pressure whereas the soot formation rate is third-order in pressure. The model reproduces quantitatively the effects of pressure on soot production and captures the transition from non-smoking to smoking flames. The radiant fraction increases with pressure because of an enhancement in soot radiation whereas the contribution of radiating gases remains approximately constant over the range of pressures considered. In addition, gas radiation dominates at pressure lower than 75 kPa whereas soot radiation prevails at higher-pressure levels. Consistently with the data obtained at normal gravity, the smoke-point transition is found to occur for a radiant fraction of about 0.3 and the soot oxidation freezing temperature is estimated in the range 1350-1450K. Eventually, whatever the pressure considered, the surface re-radiation from the wire is higher than the incident radiative flux from the flame to the surface along the entire wire. This shows that radiative heat transfer contributes negatively to the heating of the unburnt LDPE and to the heat balance along the pyrolysing surface

    Kasabach-Merritt phenomenon and prenatal counseling: a case series.

    Get PDF
    Kasabach-Merritt phenomenon can be encountered in the perinatal period. No consensus exists regarding prenatal management. We report one prenatal case leading to therapeutic abortion and one neonatal case, successfully treated by a multimodal therapy. Prenatal counseling should include the possibility of neonatal multimodal treatment that can lead to favorable outcomes

    Fate of trace metals in anaerobic digestion

    Get PDF
    © Springer International Publishing Switzerland 2015. A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments— often agricultural lands receiving discharge waters from anaerobic digestion processes— simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.The authors acknowledge funding within the framework of the COST Action 1302 (‘European Network on Ecological Roles of Trace Metals in Anaerobic Biotechnologies’). GC is supported by a European Research Council Starting Grant (‘3C-BIOTECH; No. 261330).Peer Reviewe

    Histologic assessment of biliary obstruction with different percutaneous endoluminal techniques

    Get PDF
    BACKGROUND: Despite the sophisticated cross sectional image techniques currently available, a number of biliary stenosis or obstructions remain of an uncertain nature. In these pathological conditions, an "intrinsic" parietal alteration is the cause of biliary obstruction and it is very difficult to differentiate benign from malignant lesions using cross-sectional imaging procedures alone. We evaluated the efficacy of different endoluminal techniques to achieve a definitive pathological diagnosis in these situations. METHODS: Eighty patients underwent brushing, and or biopsy of the biliary tree through an existing transhepatic biliary drainage route. A subcoort of 12 patients needed balloon-dilatation of the bile duct and the material covering the balloon surface was also sent for pathological examination (balloon surface sampling). Pathological results were compared with surgical findings or with long-term clinical and instrumental follow-ups. Success rates, sensitivity, specificity, accuracy, confidential intervals, positive predictive value and negative predictive value of the three percutaneous techniques in differentiating benign from malignant disease were assessed. The agreement coefficient of biopsy and brushing with final diagnosis was calculated using the Cohen's "K" value. RESULTS: Fifty-six patients had malignant strictures confirmed by surgery, histology, and by clinical follow-ups. Success rates of brushing, balloon surface sampling, and biopsy were 90.7, 100, and 100%, respectively. The comparative efficacy of brushing, balloon-surface sampling, and biopsy resulted as follows: sensitivity of 47.8, 87.5, and 92.1%, respectively; specificity of 100% for all the techniques; accuracy of 69.2, 91.7 and 93.6%, Positive Predictive Value of 100% for all the procedures and Negative Predictive Value of 55, 80, and 75%, respectively. CONCLUSIONS: Percutaneous endoluminal biopsy is more accurate and sensitive than percutaneous bile duct brushing in the detection of malignant diseases (p < 0.01)

    Clinical spectrum of MTOR-related hypomelanosis of Ito with neurodevelopmental abnormalities

    Get PDF
    PURPOSE: Hypomelanosis of Ito (HI) is a skin marker of somatic mosaicism. Mosaic MTOR pathogenic variants have been reported in HI with brain overgrowth. We sought to delineate further the pigmentary skin phenotype and clinical spectrum of neurodevelopmental manifestations of MTOR-related HI. METHODS: From two cohorts totaling 71 patients with pigmentary mosaicism, we identified 14 patients with Blaschko-linear and one with flag-like pigmentation abnormalities, psychomotor impairment or seizures, and a postzygotic MTOR variant in skin. Patient records, including brain magnetic resonance image (MRI) were reviewed. Immunostaining (n = 3) for melanocyte markers and ultrastructural studies (n = 2) were performed on skin biopsies. RESULTS: MTOR variants were present in skin, but absent from blood in half of cases. In a patient (p.[Glu2419Lys] variant), phosphorylation of p70S6K was constitutively increased. In hypopigmented skin of two patients, we found a decrease in stage 4 melanosomes in melanocytes and keratinocytes. Most patients (80%) had macrocephaly or (hemi)megalencephaly on MRI. CONCLUSION: MTOR-related HI is a recognizable neurocutaneous phenotype of patterned dyspigmentation, epilepsy, intellectual deficiency, and brain overgrowth, and a distinct subtype of hypomelanosis related to somatic mosaicism. Hypopigmentation may be due to a defect in melanogenesis, through mTORC1 activation, similar to hypochromic patches in tuberous sclerosis complex

    MRCP compared to diagnostic ERCP for diagnosis when biliary obstruction is suspected: a systematic review

    Get PDF
    BACKGROUND: Magnetic resonance cholangiopancreatography (MRCP) is an alternative to diagnostic endoscopic retrograde cholangiopancreatography (ERCP) for investigating biliary obstruction. The use of MRCP, a non-invasive procedure, may prevent the use of unnecessary invasive procedures. The aim of the study was to compare the findings of MRCP with those of ERCP by the computation of accuracy statistics. METHODS: Thirteen electronic bibliographic databases, covering biomedical, science, health economics and grey literature were searched. A systematic review of studies comparing MRCP to diagnostic ERCP in patients with suspected biliary obstruction was conducted. Sensitivity, specificity, likelihood ratios, acceptability and adverse events were reported. RESULTS: 25 studies were identified reporting several conditions including choledocholithiasis (18 studies), malignancy (four studies), obstruction (three studies), stricture (two studies) and dilatation (five studies). Three of the 18 studies reporting choledocholithiasis were excluded from the analysis due to lack of data, or differences in study design. The sensitivity for the 15 studies of choledocholithiasis ranged from 0.50 to 1.00 while specificity ranged from 0.83 to 1.00. The positive likelihood ratio ranged: from 5.44–47.72 and the negative likelihood ratio for the 15 studies ranged from 0.00–0.51. Significant heterogeneity was found across the 15 studies so the sensitivities and specificities were summarised by a Receiver Operating Characteristic (ROC) curve. For malignancy, sensitivity ranged from 0.81 to 0.94 and specificity from 0.92 to 1.00. Positive likelihood ratios ranged from 10.12 to 43 and negative likelihood ratios ranged from 0.15 to 0.21, although these estimates were less reliable. CONCLUSION: MRCP is a comparable diagnostic investigation in comparison to ERCP for diagnosing biliary obstruction
    corecore